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A B S T R A C T

Island endemism is shaped by complex interactions among environmental, ecological, and evolutionary factors,
yet the relative contributions of topography, climate, and land cover remain incompletely quantified. We
investigated the drivers of endemic plant richness across Crete, a Mediterranean biodiversity hotspot, using
spatially explicit data on species distributions, topographic complexity, climatic variability, land cover, and soil
characteristics. Artificial Neural Network models, a machine learning tool, were employed to assess the relative
importance of these predictors and to identify hotspots of endemism. We found that total species richness,
elevation range, and climatic variability were the strongest predictors of endemic richness, reflecting the role of
biodiversity, topographic heterogeneity, and climatic gradients in generating diverse habitats and micro-refugia
that promote speciation and buffer extinction risk. Endemic hotspots only partially overlapped with areas of high
total species richness, indicating that total species richness was the optimal from the ones examined, yet an
imperfect surrogate of endemic species richness. These environmentally heterogeneous areas also provide critical
ecosystem services, including soil stabilization, pollination, and cultural value, which are increasingly threatened
by tourism, renewable energy development, land-use change, and climate impacts. Our findings underscore the
importance of prioritizing mountainous and climatically variable regions in conservation planning, integrating
ecosystem service considerations, and accounting for within-island spatial heterogeneity. By explicitly linking
the environmental drivers of endemism to both biodiversity patterns and ecosystem function, this study provides
a framework for evidence-based conservation planning in Crete and other Mediterranean islands with similar
geological and biogeographic contexts.

1. Introduction

Although islands cover only a small fraction of the Earth’s surface,
they harbor a disproportionate share of biodiversity, with over one-third
of global hotspots located on islands (Myers et al., 2000; Schrader et al.,
2024). Their restricted area, isolation, and human pressures make them
highly vulnerable to global change (IPBES, 2019; Vogiatzakis et al.,
2023; WWF, 2022). Yet the responses of island biodiversity to land use
and climate change remain poorly understood (Moustakas et al., 2025),
hindering effective policy translation (Cámara-Leret and Dennehy,
2019). Endemic species, confined to specific regions, are of particular
concern due to their unique evolutionary histories (Cañadas et al.,
2014).

Climate strongly influences species evolution and distribution
(Lawlor et al., 2024; Parmesan, 1996). Species occurrences depend on
temperature, precipitation, and climatic variability (Fonteyn et al.,
2025; Gallou et al., 2023; Gutiérrez-Hernández and García, 2021). Cli-
matic heterogeneity can act as a refugium, providing microclimatic
buffering (Gallou et al., 2023; Gavin et al., 2014). However, climate-
only models often perform poorly (Beale and Lennon, 2012; Lennon,
2000), as species responses depend on interactions with other abiotic
and biotic factors (Lawlor et al., 2024). Broader analyses are therefore
needed (Peng et al., 2024).

Land cover and habitat also determine endemic distributions
(Chauvier et al., 2021; Gábor et al., 2024). While endemics are usually
linked to natural habitats, some persist in agricultural or human-
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modified environments (Adu-Acheampong et al., 2016; Ondoño et al.,
2015). Habitat heterogeneity can enhance diversity but may disadvan-
tage habitat specialists (Matthews et al., 2014). Topography shapes
distributions by offering refugia in steep or inaccessible areas
(Fitzsimons and Michael, 2017; Irl et al., 2015; Trigas et al., 2013).
Elevation and soil further influence plant endemism (Bachman et al.,
2004; Bárcenas-Argüello et al., 2013; Chrysostomou et al., 2024; Hul-
shof and Spasojevic, 2020).

Patterns of species richness in islands have been long studied
(Benavides Rios et al., 2024; Kalmar and Currie, 2006; MacArthur and
Wilson, 1967; Panitsa et al., 2006). Island diversification has been linked
to overall species richness, supporting the notion that “biodiversity be-
gets biodiversity” (Emerson and Kolm, 2005; van Holstein and Foley,
2024). Endemic richness often correlates with total richness because
both depend on island attributes such as area, climate, and habitat
(Beierkuhnlein, 2024; Cadena et al., 2005; Schluter and Pennell, 2017).

Island endemics are not only markers of unique evolutionary pro-
cesses but also key providers of ecosystem services, including pollina-
tion, soil stabilization, water regulation, and nutrient cycling, as well as
cultural and economic benefits. Their restricted ranges make them
especially vulnerable, meaning that even small-scale disturbances can
have disproportionate impacts. The loss of endemics threatens both
ecosystem integrity and human well-being, increasing risks under global
change.

Recognizing their dual ecological and societal roles highlights the
need to incorporate them into conservation planning and ecosystem
service assessments. These priorities align with international frame-
works such as the IPBES global assessments (IPBES, 2019) and the EU
Biodiversity Strategy for 2030 (European Commission, 2020), which
emphasize the protection and restoration of species-rich habitats. Safe-
guarding endemic-rich areas through protected networks, sustainable
land use, and climate adaptation is therefore critical for meeting
biodiversity targets and maintaining the ecosystem services that support
human well-being (IPBES, 2019).

Understanding endemic distributions is complex, as interacting
drivers often violate statistical assumptions (Calude and Longo, 2017).
Computational approaches that manage multiple, correlated variables
provide plausible alternatives to these issues (Kar and Dwivedi, 2020).
The growing availability of spatial data and environmental sensors
creates new opportunities (Karimi, 2024; Moustakas, 2017), while
interdisciplinary, data-driven methods promise deeper insights into
species–environment relationships (Leonelli and Tempini, 2021; Mous-
takas and Katsanevakis, 2018).

We use the island of Crete as a case study because of its exceptional
plant endemism, diverse land cover, complex topography, and pro-
nounced anthropogenic pressures (Vogiatzakis et al., 2003; Papanastasis
and Kazaklis, 1998). Combining a spatially explicit atlas of Cretan flora
with environmental predictors, we applied machine learning to disen-
tangle the independent effects of multiple, potentially correlated
drivers. Specifically, we address four questions: (1) How do biophysical
parameters, including climate, land cover, topography, and soil, shape
endemic species richness? (2) To what extent does total species richness
predict endemic richness? (3) How are endemic species distributions
clustered with respect to environmental variables and overall biodi-
versity? and (4) What are the implications of these patterns for
ecosystem services and biodiversity management? We hypothesize that
endemic richness is best explained by the joint influence of climate, land
cover, topography, and soils, rather than climate alone, and that areas of
high overall richness also support more endemic species. By testing this
hypothesis, we aim to generate insights that can guide both ecological
theory and applied conservation policy.

2. Methods

2.1. Study area & data overview

The study focused on Crete and its surrounding islets (‘Crete’), with
the island centre located at coordinates 35.2401◦ N, 24.8093◦ E. Crete is
a Mediterranean biodiversity hotspot and one of the ten red alert areas
for conservation in the region (Médail and Diadema, 2009). Endemic
plant species account for over 10 % of the native vascular flora, with
approximately (depending on the study and plant taxonomy) 1700
vascular plant species documented across the island’s 8374 km2

(Lazarina et al., 2019; Menteli et al., 2019; Turland et al., 1993). Crete’s
topography is dominated by three mountain massifs: Psiloritis, the
highest at 2456 m, and Lefka Ori (White Mountains), the largest, with 15
peaks exceeding 2200 m (Vogiatzakis et al., 2003). Elevation varies
steeply, particularly in the south-west, creating strong environmental
gradients (Vogiatzakis et al., 2003). Mean annual precipitation (mean =

732 mm) generally increases toward the west and north and peaks at
higher elevations, whereas temperature (mean = 16.69C) rises south-
ward and is highest at lower elevations. Coastal areas are heavily
modified by urban and tourist infrastructure, while the majority of the
human population resides in northern urban centres. Agriculture is
widespread, predominantly olive groves and vineyards. Crete’s soils
mainly derive from its carbonate geology, with shallow stony Leptosols
dominating the island. Upland areas have thin, rocky soils, while terra
rossa occurs on limestone plateaus. Deeper alluvial soils in valleys and
plains support agriculture, and small serpentine outcrops host distinc-
tive endemic-rich vegetation. (Yassoglou et al., 2017).

2.1.1. Plant distribution data
We used the spatially explicit Flora of the Cretan Area dataset, which

divides Crete into 162 grid cells of 8.25 × 8.25 km (Chilton and Turland,
2004, 2008; Turland et al., 1993). These cells do not distinguish between
land and water though in the vast majority contains land exclusively.
Cell adjustments were made as follows: (1) coastal cells with <10 % land
area were merged with adjacent cells; (2) very small islands and islets
were incorporated into neighbouring coastal cells; (3) isolated islands
were included in modified squares so that each island fell entirely within
a single cell (Turland et al., 1993). The final cells has an approximately
equal land surface area (differences <2 %). of All spatial data were
harmonized to an 8.25 km resolution.

2.1.2. Species richness
Plant species richness per cell was calculated from the Flora of the

Cretan Area (Chilton and Turland, 2004, 2008; Turland et al., 1993).
Total species richness included 1706 species. Total species richness was
computed per cell as the sum of all species present in the cell. Endemic
species richness included 174 species. Endemic species richness was
computed per cell as the sum of all endemic species present in the cell.

2.1.3. Climate
Climatic variables were obtained from WorldClim (Hijmans et al.,

2009) and aggregated from 1 km to 8.25 km by averaging all cells within
each grid. Variables included annual mean temperature, mean temper-
ature of warmest and coldest quarters, temperature range, annual mean
precipitation, precipitation of wettest and driest quarters, and precipi-
tation range. Data from 2010 were used to approximate the temporal
context of the 2008 flora records.

2.1.4. Land cover
CORINE Land Cover Level 3 (EEA, 2000) at 100 m resolution was

used to quantify land cover composition per cell via Patch Analyst in
ArcGIS. We calculated richness and percentage cover for natural, agri-
cultural, and artificial land cover types, as well as total land cover
richness. The 2012 snapshot was used to align temporally with the
species dataset.
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2.1.5. Topography
Mean elevation and elevation range per cell were computed using

100 m elevation intervals. Mean elevation was the average of all points
per cell; elevation range was the difference between maximum and
minimum values.

2.1.6. Soil
Soil data were sourced from SoilGrids (Hengl et al., 2014) at 1 km

resolution and aggregated to 8.25 km. For each cell, the dominant soil
type and soil richness (number of unique soil types) were recorded.

All variables together with their mean values and units used as in-
dependent explanatory covariates in the analysis are listed in Table 1.

2.2. Analysis

2.2.1. Principal components analysis (PCA)
To explore patterns of environmental and habitat variation across

study sites, we conducted a Principal Component Analysis (PCA) on all
explanatory variables, except soil type that is a factor (Demšar et al.,
2013). All variables were standardized to zero mean and unit variance to
ensure comparability. PCA was performed to identify potential multi-
collinearity and summarize major gradients of variation among vari-
ables and sites. The first four principal components (PC1–PC4) were
examined, with variable loadings >0.3 considered influential, and were
used to visualize site clustering and explore related ecological patterns
(Demšar et al., 2013).

2.2.2. Artificial neural network model
Predictor variables were standardized (mean = 0, standard devia-

tion = 1) to improve model convergence. Categorical (factor) variables
were transformed into binary indicator variables. We employed feed-
forward artificial neural networks (ANNs) regression to model endemic

species richness as a function of the predictor variables (Hasson et al.,
2020). The ANN architecture consisted of an input layer corresponding
to the number of predictor variables, one hidden layer with four neurons
each, and an output layer with a single neuron representing predicted
species richness (Ibnu et al., 2020). Rectified Linear Unit (ReLU) acti-
vation functions were used for hidden layers, and a linear activation
function was applied at the output layer to accommodate continuous
response values (Razavi, 2021). All analyses were conducted in Python
3.11 using the TensorFlow (v2.x) and Keras libraries for ANN
implementation.

2.2.3. Model training and validation
The dataset was randomly split into training (80 %) and testing (20

%) subsets. Model parameters were optimized using the Adam optimizer
with a learning rate of 0.001 and Mean Squared Error (MSE) as the loss
function. Early stopping based on validation loss was implemented, with
a patience of 10–20 epochs and a minimum improvement threshold of
0.001 to prevent overfitting (Razavi, 2021). Hyperparameter tuning,
including the number of hidden layers, neurons per layer, and regula-
rization strength, was conducted using a grid search approach with five-
fold cross-validation on the training data (Razavi, 2021).

2.2.4. Model evaluation
Model performance was evaluated using the testing dataset with

multiple metrics, including root mean squared error (RMSE), mean ab-
solute error (MAE), and coefficient of determination (R2). Variable
importance was quantified using permutation importance, which mea-
sures the decrease in model performance when the values of a predictor
are randomly permuted. This approach allowed us to identify the
environmental variables that most strongly influenced predictions of
endemic species richness in the neural network (Altmann et al., 2010).
To further investigate model performance, ANN model outputs were
plotted versus endemic species richness data and a linear regression
between ANN outputs and data and 95 % confidence intervals were
calculated and plotted. Residuals of ANN outputs were plotted versus
endemic species richness data to quantify whether residuals are poten-
tially biased toward lower or larger values. A linear regression between
ANN residuals and data and 95 % confidence intervals were calculated
and plotted.

2.3. Explaining machine learning outputs

To examine spatial patterns and environmental drivers of endemic
species richness, we plotted endemic species richness, and their top 20 %
explanatory variables as derived from machine learning outputs. Spatial
overlap and distribution patterns were visually assessed using maps.
Relationships between endemic species richness and their top 20 %
explanatory variables were quantified using Pearson correlation co-
efficients. Correlation strengths were interpreted to evaluate the degree
to which each variable explained variation in endemic species richness
across sites.

3. Results

3.1. Principal components analysis (PCA)

A principal component analysis (PCA) summarized explanatory
variables across spatial locations (cells). The first two principal com-
ponents captured distinct ecological gradients. PC1 represented a cli-
matic gradient, with positive loadings for precipitation and elevation
and negative loadings for temperature, distinguishing cool, wet high-
lands from warm, dry lowlands (Fig. 1a; 1b). PC2 contrasted human-
modified versus natural landscapes, positively with high agricultural
cover and diversity and negatively with natural cover (Fig. 1a; 1b). PC3
reflected habitat heterogeneity and species richness, where artificial
habitats were associated with lower biodiversity. PC4 captured soil

Table 1
Description and mean value of independent explanatory variables of endemic
species richness deployed in the analysis.

Nr Explanatory variables Mean
value

Abbreviation Unit

Climate
1 Mean temperature 16.6901 Temp_Mean C
2 Temperature range 13.0574 Temp_Rang C
3 Temperature coldest quarter 10.6043 Temp_Cold C
4 Temperature warmest quarter 23.6617 Temp_Warm C
5 Mean precipitation 732.111 Precip_Mean mm
6 Precipitation range 379.056 Precip_Range mm
7 Precipitation wettest quarter 389.5 Precip_Wet mm
8 Precipitation driest quarter 10.4444 Precip_Dry mm

Land cover
9 Natural land cover types richness 4.20988 Natural_Div Num

10
Agricultural land cover types
richness 3.34568 Agric_Div Num

11 Artificial land cover types richness 0.876543 Artif_Div Num
12 Total land cover types richness 8.4321 Hab_Div Num
13 Natural land cover percentage 58.8474 Natural_Cover %
14 Agricultural land cover percentage 39.231 Agric_Cover %
15 Artificial land cover percentage 1.742 Artif_Cover %

Soil
16 Predominant soil type Factor
17 Soil types richness 3.45679 Soil_Div Num

Topography
18 Mean elevation 296.302 Alt m
19 Elevation range 736.969 Alt_Range m

Biodiversity
20 Total species richness 122.525 Total_Spp Num

A. Moustakas and I.N. Vogiatzakis
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Fig. 1. Principal Components Analysis (PCA) of explanatory variables. a. PCA biplot of PC1 and PC2 showing site scores and variable loadings; arrow length indicates
the strength of each variable’s influence. b. Heatmap of standardized environmental, habitat, and species richness variables.
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diversity and species richness, independent of elevation (Fig. 1a; 1b).
These PCs provide a concise framework for understanding ecological
gradients across the landscape.

3.2. Machine learning ANN outputs

Machine learning ANN model outputs indicated that the highest
ranked variable for endemic species richness was total species richness,
while elevation range, temperature range, elevation, and temperature
during the coldest quarter followed (Fig. 2a). Each of these five variables
covers up to 20 % of normalised importance (Fig. 2a). Land cover di-
versity, soil diversity, temperature during the warmest quarter, and
natural land cover percentage exhibited a normalised importance each
up to 15 % (Fig. 2a). Precipitation during the driest quarter, land cover
type richness, and mean precipitation showed a normalised importance

of up to 10 % each (Fig. 2a). Mean temperature, agricultural land cover
diversity, artificial land cover diversity, precipitation during the wettest
quarter and precipitation range were the variables with the lowest
normalised importance (Fig. 2a). ANN model fit exhibited a good fit in
both the training and test data partitions (Table 2). ANN outputs were
consistent with data values of endemic species richness across the range
of data values (Fig. 2b) and model residuals were well behaved at all
times (Fig. 2c).

3.3. Explaining machine learning outputs

3.3.1. Explaining machine learning outputs
The spatial distribution of endemic species richness shows a similar

pattern to that of total species richness, with many locations near or
below the mean and fewer sites with high richness (Fig. 3a). However,

Fig. 2. Outputs of Artificial Neural Networks (ANN) machine learning analysis. a. Relative variable importance chart measuring each variable’s importance score
standardized to the most important predictor. b. ANN model outputs (vertical axis) versus endemic species richness data (horizontal axis). Solid black line indicates a
linear regression fit between ANN outputs and data while upper and lower dotted red lines indicate a 95 % confidence interval. c. ANN model residuals (vertical axis)
versus ANN outputs. Solid black line indicates a linear regression fit between ANN outputs and data while upper and lower dotted red lines indicate a 95 % con-
fidence interval. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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locations with high endemic richness generally do not coincide with
areas of high total species richness (Fig. 3a). The distribution of eleva-
tion range differs from that of absolute elevation (Fig. 3a); most loca-
tions fall below 1200 m in elevation range, but some sites exhibit very
high ranges, reflecting areas that span from sea level to mountain peaks
(Fig. 3a). Spatially, locations with high elevation range often overlap
with sites of high elevation (Fig. 3a).

Endemic species richness has a positive correlation with total species
richness, elevation and elevation range with correlation scores over 50
% (Fig. 3b). This indicated a large increase of endemic species richness
per unit of increase in each of those three explanatory variables
(Fig. 3b). There is also a positive correlation between endemic species
richness and temperature ranges with a more moderate score (Fig. 3b)
Endemic species richness is negatively correlated with temperature
during the coldest quarter, with correlation coefficient of − 44 %
(Fig. 3b).

4. Discussion

Endemic richness in Crete is strongly shaped by environmental het-
erogeneity, with topographic complexity and climatic variability
emerging as the dominant predictors together with total species richness
(Testolin et al., 2024). By applying neural network models to integrate
multiple environmental layers across the island, we were able to
disentangle the relative contributions of topography, climate, land
cover, and total species to endemic diversity (Irl et al., 2015). This
methodological approach is particularly insightful because it captures
non-linear relationships and interactions among predictors that tradi-
tional statistical techniques often overlook, providing a more nuanced

understanding of the processes structuring biodiversity (Kar and Dwi-
vedi, 2020). The robustness of the models, despite modest sample sizes,
demonstrates the value of machine learning for identifying patterns in
complex ecological systems in a wide range of questions (Alotaibi and
Nassif, 2024; Moustakas et al., 2025). These results reinforce the view
that diverse niches and refugial conditions drive island endemism, while
also showing that hotspots of endemics and total species do not fully
overlap (Harrison and Noss, 2017). Thus, endemic diversity reflects
distinct ecological and evolutionary processes, underscoring the need
for conservation strategies that go beyond protecting areas of high
overall species richness (Jaén Molina et al., 2025). Moreover, the ability
of these models to highlight areas where endemism diverges from
overall richness offers a powerful tool for evidence-based management,
ensuring that conservation priorities are informed by the ecological
processes most critical to long-term persistence.

4.1. Explaining endemic species patterns

4.1.1. Biodiversity
Endemic richness increases with total species richness, consistent

with the idea that “biodiversity begets biodiversity” (Emerson and Kolm,
2005; van Holstein and Foley, 2024). Because factors promoting overall
richness often also benefit endemics, treating endemic and non-endemic
species as functionally equivalent may be reasonable in island systems
(Cutts et al., 2023). However, endemic hotspots only partly coincide
with overall richness (Kougioumoutzis et al., 2021), as different drivers
shape richness and turnover (Lazarina et al., 2019). Invasive richness
also rises with total richness but often contrasts spatially with endemics
(Bjarnason et al., 2017). Thus, total richness is a useful but imperfect
surrogate, and within-island replication is essential to capture spatial
heterogeneity.

4.1.2. Topography
Elevation range was the strongest predictor of endemic richness,

underscoring the role of topographic complexity in creating habitat di-
versity and micro-refugia (Camilleri et al., 2024; Médail and Diadema,
2009). Rugged terrain reduces extinction risk, promotes speciation, and
limits disturbance (Irl et al., 2014, 2015; Ye et al., 2021). The consis-
tency of these patterns globally (Irl et al., 2015) suggests topographic
complexity is a general driver of island endemism.

4.1.3. Climate
Climatic ranges, particularly in precipitation and temperature,

Fig. 2. (continued).

Table 2
ANN model summary. For model validation data is divided into training and test
partitions: the training set reveals dependencies, while the test set verifies model
accuracy on new data not used for training.

Data partition Accuracy Score

Training MAE 9.354
RMSE 0.143
R2 0.982

Testing MAE 1.382
RMSE 1.731
R2 0.973
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Ecological Informatics 92 (2025) 103513

7

predicted endemism more strongly than mean values, indicating adap-
tation to variability and speciation across fluctuating conditions (Cutts
et al., 2023; Kougioumoutzis et al., 2020). Temperature of the coldest
quarter was most influential, highlighting frost tolerance as a limiting
factor. While endemics are often climate-sensitive (Manes et al., 2021),
persistence through past fluctuations (Lécuyer et al., 2018; Markonis

et al., 2016; Vicente-Serrano et al., 2025) suggests resilience to vari-
ability. At this scale, climate correlates strongly with elevation,
emphasizing the need to disentangle collinear predictors (Lawlor et al.,
2024). Future work should integrate multiple variables to better antic-
ipate climate change impacts (Moustakas et al., 2025).

Fig. 3. a. Maps of endemic species richness and the top 20 % of explanatory variables as quantified by machine learning. These variables are: Total species richness,
Elevation range, Temperature range, Elevation, and Temperature of the coldest quarter. b. Correlograms between Endemics species richness and the top 20 % of
explanatory variables as quantified by machine learning.
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4.1.4. Land cover and soil
Land cover and soil richness contributed to endemic richness but less

than topography or climate. Heterogeneity, rather than specific cate-
gories, was most important (Thomsen et al., 2022). Although most en-
demics are in natural habitats, some persist in artificial landscapes (e.g.
Petromarula pinnata in ruins; Rackham and Moody, 1996), showing
adaptive flexibility (McKinney, 2002).

4.2. Implications for ecosystem services

On Crete, endemic plants are inextricably linked to ecosystem ser-
vices, reflecting the island’s topographic complexity, climatic vari-
ability, and long isolation that fostered high levels of endemism
(Kougioumoutzis et al., 2020; Stagiopoulou et al., 2025). Many of these
taxa (e.g., Origanum dictamnus, Zelkova abelicea) are of conservation
concern under the EU Habitats Directive and simultaneously underpin
key provisioning, regulating, cultural, and supporting services. Provi-
sioning services include the production of medicinal herbs, honey, and
essential oils, while regulating services are evident in the role of upland
endemics in stabilizing soils and buffering microclimatic extremes. En-
demics in Crete also sustain cultural values through their integration
into folklore, cuisine, and nature-based tourism, while supporting ser-
vices include habitat provision for specialized pollinators and indicators
of habitat quality.

The vulnerability of these services mirrors the threats facing Crete’s
endemic flora, including overgrazing (Kairis et al., 2015), fires in pro-
tected areas (Moustakas, 2025a, 2025b), invasive species (Bjarnason
et al., 2017), and climate change (Zittis et al., 2025). Their loss would
diminish local livelihoods, cultural identity, and ecological stability.
This case study illustrates that the ecological and evolutionary processes
driving endemism—particularly topographic and climatic hetero-
geneity—also underpin ecosystem service provision in islands as well as
mainland highlands (Langle-Flores and Quijas, 2020; Sun et al., 2021).
Protecting endemic plants is therefore not only essential for conserving
evolutionary heritage but also for maintaining the provisioning, regu-
lating, cultural, and supporting services that sustain human well-being
(Levis et al., 2024; Luo et al., 2024).

4.3. Management and policy implications

Our results have clear implications for biodiversity management and
policy in Crete and other Mediterranean islands. Areas of high endemic
richness, particularly mountainous and climatically variable regions,
should be prioritized for conservation, as they support both unique
species and critical ecosystem services (Kougioumoutzis et al., 2025;
Stagiopoulou et al., 2025). Management strategies should account for
within-island spatial heterogeneity, avoiding reliance on total species
richness alone as a surrogate for endemism. Policies must also address
emerging threats from tourism, mountainous renewable energy devel-
opment, and land-use change, integrating habitat protection with sus-
tainable development planning (Biasi et al., 2024; Kati et al., 2021; Leka
et al., 2024; Moustakas et al., 2023). The views of island stakeholders
need to be accounted for regarding the land use-climate change-biodi-
versity nexus (Moustakas et al., 2026). Incorporating environmental
heterogeneity and climate variability into conservation zoning, along-
side monitoring of invasive species, can enhance the resilience of
endemic-rich ecosystems (Escobar-Camacho et al., 2021). Finally, cross-
island collaboration and the use of transferable predictive models can
inform regional conservation strategies beyond Crete, supporting
evidence-based decision-making for geologically and biogeographically
similar islands (Deo et al., 2024).

4.4. Uncertainties and future research

Despite these insights, several limitations remain. Correlations
among environmental variables, particularly elevation and climate, may

obscure independent effects (Evans et al., 2014; Lawlor et al., 2024),
while coarse land cover and soil data may underestimate their influence
on endemics. Our focus on species richness excluded functional and
phylogenetic diversity, which could reveal additional conservation-
relevant patterns. Biotic interactions, such as competition, herbivory,
and invasive species, are difficult to quantify at landscape scales but
strongly affect species persistence (Bjarnason et al., 2017; Lazarina
et al., 2019). Environmental layers may also miss fine-scale microhab-
itats, refugia, or local anthropogenic impacts, especially in rugged
terrain (Camilleri et al., 2024; Irl et al., 2015). Climate-driven pro-
jections remain uncertain due to model variability and potential non-
linear ecological responses (Moustakas et al., 2025). Future research
should combine high-resolution environmental data, multiple biodi-
versity dimensions, and species-specific responses to better predict
endemic persistence under global change.

Although neural networks provided robust explanatory insights,
alternative machine learning or ensemble approaches could be explored
(Fisher et al., 2024; Sakti et al., 2024). Model sensitivity to training/
testing partitioning (Moustakas and Davlias, 2021) remains unassessed
due to the modest sample size (162 cells). Finally, predictors identified
in Crete may not generalize to all islands, though pre-trained models
could transfer to geologically and biogeographically similar islands,
such as Kasos and Karpathos (Deo et al., 2024).

5. Conclusions

Endemic richness in Crete is strongly influenced by topographic
complexity and climatic variability, reflecting distinct ecological and
evolutionary processes that are not fully captured by total species
richness. Elevation range and climatic heterogeneity create diverse
habitats and micro-refugia, promoting speciation and buffering extinc-
tion risks, while land cover and soil contribute more weakly, with het-
erogeneity being more important than specific types. Endemic hotspots
only partially overlap with total richness, highlighting the limits of using
total richness as a surrogate. These environmentally heterogeneous
areas also provide critical ecosystem services, including water regula-
tion, soil stabilization, and cultural value, which are threatened by
tourism, renewable energy development, and land-use change. Our
findings underscore the need to prioritize mountainous and climatically
variable areas in conservation planning, integrating biodiversity,
ecosystem services, and predictive modelling to safeguard endemic
species and the ecological functions they support under ongoing
anthropogenic and climate pressures.
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Ladičorbić, M., Díaz, J.P., Expósito, F.J., Quiroga, S., Casquet Cano, M.A., Wang, H.,
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